Neutrino Astronomy at the South Pole AMANDA and IceCube

Robert Stokstad

Lawrence Berkeley National Laboratory

Outline

The Neutrino

Detecting Neutrinos

Neutrino Astronomy

Working at the South Pole

AMANDA and IceCube

Prediction of the Neutrino

"I have done a terrible thing -I have invented a particle that cannot be detected"

-- Wolfgang Pauli, 1930

Experimental results for nuclear beta decay required either an "invisible" particle or violation of the laws of conservation of momentum and energy.

Discovery of the v

 1956 - Fred Reines and Clyde Cowan detect neutrinos from

V properties (~50 years later)

FERMIONS matter const spin = 1/2, 3

matter const

Leptons spin = 1/2				Quarks	
Flavor	Mass GeV/c ²	Electric charge		Flavor	A
ve electron neutrino	1×10 ⁻⁸	0		U up	
e electron	0 005 V C	scillation	ns	imply v ma	ISS
$ u_{\!\mu}^{\!$	0.0002	0		C charm	
$oldsymbol{\mu}$ muon	0.106	-1		S strange	
$ u_{ au}^{ ext{ tau}}$ neutrino	<0.02	0		t top	
au tau	1.7771	-1		b bottom	

Neutrino sources

The Big Bang 10⁻³ eV

Radioactive decay 10³ eV (KeV)

Nuclear fission reactors

Nuclear fusion reactor (the Sun) $10^6 \, \text{eV}$ (MeV)

Supernovae

Particle collisions

Accelerators

Cosmic rays in the atmosphere 109 eV (GeV)

WIMP annihilation ??

Active Galactic Nuclei 22

Gamma Ray Bursts ?? 10¹⁵ eV (PeV)

AMANDA/IceCube

 $10^{12} \, eV$

Neutrino Fluxes

 $\Phi_{\nu} \sim 6 \times 10^6 \nu/\text{cm}^2 \text{s}$

II. Neutrino Detection

Since neutrinos interact only through the weak force, they have enormous range. (Solar neutrinos easily penetrate a light-year of lead.) This also makes them difficult to detect.

A neutrino is not detected "directly" – it leaves no visible track. Neutrinos are detected when they collide with matter and produce fast-moving charged particles that are detectable.

Cerenkov radiation – the electromagnetic "sonic boom"

Cherenkov photons are detected by arrays of photomultiplier tubes

Tracks are reconstructed from the arrival times of the photons.

1 clock tick = 50 nanoseconds

Requirements for a Cherenkov Neutrino Detector

- 1. Large volume of transparent medium
- 2. Shielding from Cosmic Rays
- 1. Water
- 2. Deep water

Ocean

Lake (e.g., Baikal)

Ice

III. Neutrino Astronomy Mapping the neutrino sky

- Why high-energy neutrinos can be used for astronomy.
 - Neutrinos point back to their source
 - Neutrinos have no electric charge
 - Not deflected by magnetic fields
 - Neutrinos are "not absorbed" by matter
- Neutrinos will be produced at the same sites where high-energy cosmic rays originate

Cosmic Ray Energy Spectrum

Cosmic Ray and Neutrino source candidates

Supernova remnant

Microquasar

Active Galaxy

Black hole with ≈ mass of sun

Black hole with 108 x mass of sun

galactic

extra-galactic

Active Galactic Nuclei

Most models assume a central black-hole and accretion disk.

Particle acceleration occurs either near the black hole or in the jet

Core of Galaxy NGC 4261

Hubble Space Telescope Wide Field / Planetary Camera

The Antarctic Muon And Neutrino Detector Array

AMANDA 2000

IV. Working at the South Pole

McMurdo Station, Antarctica

South Pole

AMANDA-1 mile deep

"So we arrived and were able to plant our flag at the geographical

South Pole."

JANUARY 17, 1912

"The Pole. Yes, but under very different circumstances from those expected."

ELEVATION 9,301 FT.

Drilling to 2 km Depth

Fig. 8.— Sky plot of 815 events obtained from the point source analysis. Horizontal coordinates are right ascension and vertical coordinates are declination. Also shown are the sky coordinates for ten potential high-energy neutrino sources.

No evidence for point sources

Events consistent with atmospheric neutrinos

AMANDA II 2000

Additional observations consistent with atmospheric neutrinos

AMANDA skyplot 2000-2003

optimized for best sensitivity to $E^{-3} - E^{-2}$ sources

Atmospheric v 's as Test Beam

AMANDA Results

search for extraterrestrial v:

- excess of diffuse flux at high E_v
- search for point sources
 no effect seen up to now:
 limits at or close to most optimistic model
 expectations

searches for exotica

- -WIMPS
- -Monopoles no effect seen up to now

Larger detector will improve sensitivity and discovery potential.

Evolution Ihre geheimen Pläne für die Zukunft unserer Erde

Mai 2003 Deutschland 3,00 €

Österreich 3,50 € • Schweiz 6,50 sfr • BeNeLux 3,60 € • Frankreich 4,10 € Griechenland 4,75 € • Italien 4,10 € • Portugal (Cont.) 4,10 € • Slowenien SIT 930 • Spanien 4,10 €

agd auf Neutrinos:

Am Südpol startet PROJEKT ICECUBE

Das größte Experiment der Welt

Sicherheit im Tunnel

Was die Experten aus dem Gotthard-Unglück gelernt haben

Höhenflüge

Mit kühnen Ideen will Boeing den Konkurrenten Airbus überflügeln

Die Krieg AG

Private Militär-Firmen im Vormarsch, Gefahr für die Demokratie?

Astronomie

Faszinierend fremd: So sieht der Himmel über fernen Planeten aus

IceCube

IceTop AMANDA
South Pole

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km3 (1 Gton)

 IceCube is designed to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV

1400 m

2400 m

3 km high-pressure hose

All 60 Digital
Optical Modules
work and
perform
according to plan
(actually, better
than spec)

Designed for Long term reliability - time will tell

Simulations of Events in Ice Cube

A 70 Tev Muon

 $A v_{\tau}$ "double-bang"

IceCube Time Line

- Dec 2003 Drill shipped to Antarctica
- Jan-Feb 2005 Deploy X strings 1
- Dec-Feb 2006 Deploy 10 strings
- Nov-Feb 2007 Deploy 16 strings
- Nov-Feb 2008 Deploy 18 strings
- Nov-Feb 2009 Deploy 18 strings
- Nov-Feb 2010 Deploy 14 strings

Cost ~ US \$270 Million

The LBNL IceCube Group

December 2004

IceCube Institutions

USA

Bartol Research Institute

Clark Atlanta

Lawrence Berkeley National Lab

Penn. State. U.

Princeton U.

South Pole Station

Southern Univ.

U. Maryland

U.C. Berkeley

U.C. Irvine

U. Kansas

U. Wisconsin

Japan

Chiba

Europe

Belgium

Bruxelles

Mons

Germany

DESY-Zeuthen

Mainz U.

Wuppertal U.

Sweden

Kalmar U.

Stockholm U.

Uppsala U.

Netherlands

Utrecht

U.K.

U.C. London

What do we hope to learn in the future?

- Neutrino Properties
 - Absolute mass scale
 - Nature of neutrinos: Majorana or Dirac?
 - Mixing matrix (determines oscillations)
- Neutrino Astronomy
 - Discovery of (cosmic) point sources
 - Map the neutrino sky
 - Discover exotica or rule out models

THE UNEXPECTED

